

Objects and classes in Python

Contents:

	Decorators
	The decorator syntax

	Bound methods

	staticmethod()

	classmethod()

	The call() decorator

	Nesting decorators

	Class decorators before Python 2.6

	Constructing classes
	The empty class

	dict_from_class()
	The __dict__ of the empty class

	Is the doc-string part of the body?

	Definition of dict_from_class()

	property_from_class()
	About properties

	Definition of property_from_class()

	Using property_from_class()

	Unwanted keys

	Deconstructing classes

	type(name, bases, dict)
	Constructing the empty class

	Constructing any class

	Specifying __doc__, __name__ and __module__

	Subclassing int
	Mutable and immutable types

	Enumerated integers and named tuples

	The bool type

	Emulating bool - the easy part

	Emulating bool - what goes wrong

	Emulating bool - using __new__

	Understanding int.__new__

	Subclassing tuple
	The desired properties of Point

	Answer

	What happens when you call a class?
	Creation and initialisation

	The default __new__

	Summary

	Metaclass
	Every object has a type

	The metaclass of an object

	A trivial non-type metaclass

	A non-trivial example

	What’s the point?

	The __metaclass__ attribute
	Automatic subclassing of object

	Review of type(name, bases, body) and class statement

	The basic principle of the __metaclass__

	A very silly example

	A less silly example

	A __metaclass__ gotcha

	A decorator example

	Decorators versus __metaclass__
	Bunch using decorators

	Bunch using __metaclass__

	How __metaclass__ works

	Discussion

	JavaScript objects
	Like Python classes

	Custom item methods

	On metaclass

	Never instantiated

	Conclusion

	Exercise: A line from a file

	Exercise: Property from class decorator

	Exercise: Named integers

	Exercise: Subset of a set

	Exercise: Class to and from class data

	Exercise: Your own class to class decorator

	Search Page

Decorators

This section cover the decorator syntax and the concept of a
decorator (or decorating) callable.

Decorators are a syntactic convenience, that allows a Python source
file to say what it is going to do with the result of a function or a
class statement before rather than after the statement. Decorators on
function statements have been available since Python 2.4, and on
class statements since Python 2.6.

In this section we describe the decorator syntax and give examples of
its use. In addition, we will discuss functions (and other callables)
that are specifically designed for use as decorators. They are also
called decorators.

You can, and in medium sized or larger projects probably should, write
your own decorators. The decorator code might, unfortunately, be a
little complex. But it can greatly simplify the other code.

The decorator syntax

The decorator syntax uses the @ character. For function statements
the following are equivalent:

State, before defining f, that a_decorator will be applied to it.
@a_decorator
def f(...):
 ...

def f(...):
 ...

After defining f, apply a_decorator to it.
f = a_decorator(f)

The benefits of using the decorator syntax are:

	The name of the function appears only once in the source file.

	The reader knows, before the possibly quite long definition of the
function, that the decorator function will be applied to it.

The decorator syntax for a class statement is same, except of course
that it applies to a class statement.

Bound methods

Unless you tell it not to, Python will create what is called a bound
method when a function is an attribute of a class and you access it
via an instance of a class. This may sound complicated but it does
exactly what you want.

>>> class A(object):
... def method(*argv):
... return argv
>>> a = A()
>>> a.method
<bound method A.method of <A object at 0x...>>

When we call the bound method the object a is passed as an argument.

>>> a.method('an arg')
(<A object at 0x...>, 'an arg')
>>> a.method('an arg')[0] is a
True

staticmethod()

A static method is a way of suppressing the creation of a bound method
when accessing a function.

>>> class A(object):
... @staticmethod
... def method(*argv):
... return argv
>>> a = A()
>>> a.method
<function method at 0x...>

When we call a static method we don’t get any additional arguments.

>>> a.method('an arg')
('an arg',)

classmethod()

A class method is like a bound method except that the class of the
instance is passed as an argument rather than the instance itself.

>>> class A(object):
... @classmethod
... def method(*argv):
... return argv
>>> a = A()
>>> a.method
<bound method type.method of <class 'A'>>

When we call a class method the class of the instance is passed as an
additional argument.

>>> a.method('an arg')
(<class 'A'>, 'an arg')
>>> a.method('an arg')[0] is A
True

In addition, class methods can be called on the class itself.

>>> A.method('an arg')
(<class 'A'>, 'an arg')

The call() decorator

Suppose we want to construct a lookup table, say containing the
squares of positive integers for 0 to n.

For n small we can do it by hand:

>>> table = [0, 1, 4, 9, 16]
>>> len(table), table[3]
(5, 9)

Because the formula is simple, we could also use a list comprehension:

>>> table = [i * i for i in range(5)]
>>> len(table), table[3]
(5, 9)

Here’s another way, that uses a helper function (which we will call
table). For a table of squares list comprehension is better,
because we can write an expression that squares. But for some tables
a complex sequence of statements is required.

>>> def table(n):
... value = []
... for i in range(n):
... value.append(i*i)
... return value
>>> table = table(5)

We call the helper function table for three related reasons

	It indicates the purpose of the function.

	It ensures that the helper function is removed from the namespace
once the table has been constructed.

	It conforms to the decorator syntax.

As before, we test the table and find that it works.
>>> len(table), table[3]
(5, 9)

>>> def call(*argv, **kwargs):
... def call_fn(fn):
... return fn(*argv, **kwargs)
... return call_fn

>>> @call(5)
... def table(n):
... value = []
... for i in range(n):
... value.append(i*i)
... return value

>>> len(table), table[3]
(5, 9)

Nesting decorators

The decorator syntax can be nested. The following example is similar
to the list comprehension approach, except that it uses a generator
function rather than a generator expression.

>>> @list
... @call(5)
... def table(n):
... for i in range(n):
... yield i * i

We read this as saying:

The value of table is the list obtained by iterating over the
function evaluated at n equal to 5.

The purpose of this example is illustrate some of the concepts. We
are not saying that it is, or is not good programming practice. That
will depend, in part, on the context.

As before, we test the table and find that it works.

>>> len(table), table[3]
(5, 9)

Class decorators before Python 2.6

Prior to Python 2.6 one could not write

@a_decorator
class MyClass(...):

 # possibly many lines of code.

If you need to support earlier versions of Python, I recommend that
you develop in Python 2.6 or later. This allows your mind and
keyboarding to use decorators. Once the decorating code is stable
refactor it to support earlier versions of Python, as follows.

@a_decorator
class MyClass(...):

 # possibly many lines of code.

MyClass = a_decorator(MyClass) # if changed, change decorator comment.

This approach allows you to think and largely code using the class
decorator point of view, at the cost of having to keep the decorator
comment up to date when the decorator changes.

Constructing classes

There are two basic ways of constructing classes in Python. The best
known way is to use Python’s class statement. The other
way is to use Python’s type() function. This page covers the
statement way. type(name, bases, dict) is more powerful and
sometimes more convenient. However, the statement approach is the
better way to get started and in ordinary programming is the most
convenient.

The empty class

We will start with the empty class, which is not as empty as it looks.

>>> class A(object):
... pass

Like most Python objects, our empty class has a dictionary. The
dictionary holds the attributes of the object.

>>> A.__dict__
<dictproxy object at 0x...>

Even though our class is empty, its dictionary (or more exactly
dictproxy) is not.

>>> sorted(A.__dict__.keys())
['__dict__', '__doc__', '__module__', '__weakref__']

Attributes __doc__ and __module__ are there for documentation, and to
give better error messages in tracebacks. The other attributes are
there for system purposes.

In addition, our class two attributes that are not even listed in the
dictionary. The __bases__ attribute is the list of base classes
provided in the original class statement.

>>> A.__bases__
(<type 'object'>,)

The method resolution order (mro) attribute __mro__ is computed from
the bases of the class. It provides support for multiple inheritance.

>>> A.__mro__
(<class 'A'>, <type 'object'>)

For now the important thing is that even the empty class has
attributes. (For IronPython and Jython the attributes are slightly
different.)

dict_from_class()

In this section we define a functions that gets a dictionary from a
class. This dictionary contains all the information supplied in the
body of a class statement, except for the doc-string.

The __dict__ of the empty class

Here’s our empty class again:

>>> class A(object):
... pass

As seen in Constructing classes, even for the empty class its class
dictionary has entries. Handling these always-there entries is a
nuisance when deconstructing classes. Here, once again, is the list
of entries.

>>> sorted(A.__dict__.keys())
['__dict__', '__doc__', '__module__', '__weakref__']

The __dict__ and __weakref__ entries are there purely for system
purposes. This makes them easier to deal with.

The class docstring __doc__ is None unless the user supplies a value.

>>> A.__doc__ is None
True

>>> class A2(object):
... 'This is the docstring'

>>> A2.__doc__
'This is the docstring'

Ordinarily, __module__ is the name of the module in which the class is
defined. However, because of the way Sphinx uses doctest, it gets the
name of the module wrong. Please don’t worry about this. Despite
what it says below, it’s the name of the module.

>>> A.__module__
'__builtin__'

Is the doc-string part of the body?

Soon we will define a function that copies the body, as a dictionary,
out of a class. But first we must answer the question: Is the
doc-string part of the body of a class?

There is no completely satisfactory answer to this question, as there
are good arguments on both sides. We choose NO, because for example
using the -OO command line option will remove doc-strings, and so
they are not an essential part of the body of the class. (However,
-OO does not remove doc-strings produced explicitly, by assigning to
__doc__.)

The keys to be excluded are precisely the ones that the empty class
(which has an empty body) has.

>>> _excluded_keys = set(A.__dict__.keys())

Definition of dict_from_class()

This function simply filters the class dictionary, copying only the
items whose key is not excluded.

>>> def dict_from_class(cls):
... return dict(
... (key, value)
... for (key, value) in cls.__dict__.items()
... if key not in _excluded_keys
...)

As expected, the empty class has an empty body.

>>> dict_from_class(A)
{}

Here’s a class whose body is not empty.

>>> class B(object):
... 'This docstring is not part of the body.'''
... s = 'a string'
... def f(self): pass

We get what we expect for the body. (See [somewhere] for why we need
the __func__.)

>>> dict_from_class(B) == dict(s='a string', f=B.f.__func__)
True

Here’s another way of expressing the same truth.

>>> sorted(dict_from_class(B).items())
[('f', <function f at 0x...>), ('s', 'a string')]

property_from_class()

This section shows how using a class decorator, based upon
dict_from_class(), can make it much easier to define complex
properties. But first we review properties.

About properties

The property() type is a way of ‘owning the dot’ so that
attribute getting, setting and deletion calls specified functions.

One adds a property to a class by adding to its a body a line such as
the following, but with suitable functions for some or all of fget,
fset and fdel. One can also specify doc to give the property a
doc-string.

attrib = property(fget=None, fset=None, fdel=None, doc=None)

If all one wants is to specify fset (which is a common case) you can
use property as a decorator. This works because fget is the first
argument.

For example, to make the area of a rectangle a read-only property you
could write:

@property
def attrib(self):
 return self.width * self.length

Suppose now you have a property that you wish to both get and set.
Here’s the syntax we’d like to use.

@property_from_class
class attrib(object):
 '''Doc-string for property.'''

 def fget(self):
 '''Code to get attribute goes here.'''

 def fset(self):
 '''Code to set attribute goes here.'''

We will now construct such a decorator.

Definition of property_from_class()

This function, designed to be used as a decorator, is applied to a
class and returns a property. Notice how we pick up the doc-string as
a separate parameter. We don’t have to check for unwanted keys in the
class dictionary - property() will do that for us.

>>> def property_from_class(cls):
...
... return property(doc=cls.__doc__, **dict_from_class(cls))

Using property_from_class()

Here is an example of its use. We add a property called value, which
stores its data in _value (which by Python convention is private). In
this example, we validate the data before it is stored (to ensure that
it is an integer).

>>> class B(object):
... def __init__(self):
... self._value = 0
...
... @property_from_class
... class value(object):
... '''The value must be an integer.'''
... def fget(self):
... return self._value
... def fset(self, value):
... # Ensure that value to be stored is an int.
... assert isinstance(value, int), repr(value)
... self._value = value

Here we show that B has the required properties.

>>> b = B()
>>> b.value
0

>>> b.value = 3

>>> b.value
3

>>> B.value.__doc__
'The value must be an integer.'

>>> b.value = 'a string'
Traceback (most recent call last):
AssertionError: 'a string'

Unwanted keys

If the class body contains a key that property does not accept we for
no extra work get an exception (which admittedly could be a clearer).

>>> @property_from_class
... class value(object):
... def get(self):
... return self._value
Traceback (most recent call last):
TypeError: 'get' is an invalid keyword argument for this function

Deconstructing classes

In Constructing classes we saw how to construct a class (by using the
class keyword). In this section we see how to reverse the
process.

To use the class keyword you have to specify:

	A name for your class.

	A tuple of bases.

	A class body.

In this section we see how to get this information back again. Let’s
do the easy stuff first. Here’s our empty class again:

>>> class A(object):
... pass

Here’s how to get the name of the class:

>>> A.__name__
'A'

And here’s how to get the bases:

>>> A.__bases__
(<type 'object'>,)

[To be continued.]

type(name, bases, dict)

According to its docstring, there are two ways to call the
type() builtin.

>>> print type.__doc__
type(object) -> the object's type
type(name, bases, dict) -> a new type

In this section we explore how to use type() to construct new
classes.

Constructing the empty class

As usual, we start with the empty class. The __name__ attribute of
the class need not be the same as the name of the variable in which we
store the class. When at top-level (in the module context) the class
command binds the class to the module object, using the name of the
class as the key.

When we use type, there is no link between the __name__ and the
binding.

>>> cls = type('A', (object,), {})

The new class has the name we expect.

>>> cls.__name__
'A'

Its docstring is empty.

>>> cls.__doc__ is None
True

It does not have a __module__ attribute, which is surprising.

>>> cls.__module__
Traceback (most recent call last):
AttributeError: __module__

This class does not have a __module__ attribute because to the things
that Sphinx does when running the doctest. Ordinarily, the class will
have a __module__ attribute.

>>> sorted(cls.__dict__.keys())
['__dict__', '__doc__', '__weakref__']

The lack of a __module__ attribute explains the string representation
of the class.

>>> cls
<class 'A'>

Constructing any class

We obtained the empty class, whose __dict__ has only the system keys,
by passing the empty dictionary to type(). We obtain more
interesting classes by passing a non-empty dictionary. We can at the
same time pass more interesting bases, in order to achieve
inheritance.

Specifying __doc__, __name__ and __module__

Let’s try to use the dict argument to specify these special
attributes.

>>> body = dict(__doc__='docstring', __name__='not_A', __module__='modname')
>>> cls2 = type('A', (object,), body)

We have set the __docstring__ and __module__ attributes, but the
__name__ is still A.

>>> cls2.__doc__, cls2.__name__, cls2.__module__
('docstring', 'A', 'modname')

Subclassing int

We subclass in order to create a new class whose behaviour is
inherited from the base classes, except that the new class can also
override and add behaviour. Object creation is behaviour. For most
classes it is enough to provide a different __init__ method, but for
immutable classes one often have to provide a different __new__
method.

In this section we explain why __new__ is needed, and give examples of
its use. But first we review mutation.

Mutable and immutable types

Some objects in Python, such as dictionaries and lists, can be
changed. We can change these objects after they have been made. This
is called mutation. The types dict and list are
called mutable types.

>>> x = []
>>> x.append(1)
>>> x
[1]

Some other objects, such as strings and tuples, cannot be changed.
Once made they cannot be changed. They are called immutable types.

>>> y = 'abc'
>>> y[0] = 'A'
Traceback (most recent call last):
TypeError: 'str' object does not support item assignment

Enumerated integers and named tuples

We will use enumerated integers as an example in this section. In
Python, booleans are an example of an enumerated integer type.

However, our task in this section is not to use booleans but to
understand them. This will allow us to create our own subclasses of
int and of immutable types.

The bool type

Here we review the bool type in Python.

Comparisons return a boolean, which is either True or False.

>>> 1 < 2, 1 == 2
(True, False)

True and False are instance of the bool type.
>>> type(True), type(False)
(<type ‘bool’>, <type ‘bool’>)

The bool type inherits from int.

>>> bool.__bases__
(<type 'int'>,)

Because True and False are (in the sense of inherit from) integers, we
can do arithmetic on them.

>>> True + True
2
>>> False * 10
0

We can even use boolean expressions as numbers (although doing so
might result in obscure code).

>>> a = 3; b = 4
>>> (a < b) * 10 + (a == b) * 20
10

Emulating bool - the easy part

In this subsection, as preparation for enumerated integers, we will
start to code a subclass of int that behave like
bool. We will start with string representation, which is
fairly easy.

>>> class MyBool(int):
... def __repr__(self):
... return 'MyBool.' + ['False', 'True'][self]

This give us the correct string representations.
>>> f = MyBool(0)
>>> f
MyBool.False

>>> t = MyBool(1)
>>> t
MyBool.True

But compare

>>> bool(2) == 1
True

with

>>> MyBool(2) == 1
False

In fact we have

>>> MyBool(2) == 2
True
>>> MyBool(2)
Traceback (most recent call last):
IndexError: list index out of range

Emulating bool - what goes wrong

In many classes we use __init__ to mutate the newly constructed
object, typically by storing or otherwise using the arguments to
__init__. But we can’t do this with a subclass of int (or
any other immuatable) because they are immutable.

You might try

>>> class InitBool(int):
... def __init__(self, value):
... self = bool(value)

but it won’t work. Look at this - nothing has changed.

>>> x = InitBool(2)
>>> x == 2
True

This line of code

self = bool(value)

is deceptive. It does change the value bound to the self in
__init__, but it does not change the object that was passed to
__init__.

You might also try

>>> class InitBool2(int):
... def __init__(self, value):
... return bool(value)

but when called it raises an exception

>>> x = InitBool2(2)
Traceback (most recent call last):
TypeError: __init__() should return None, not 'bool'

Emulating bool - using __new__

The solution to the problem is to use __new__. Here we will show that
it works, and later we will explain elsewhere exactly what
happens. [where?].

>>> class NewBool(int):
... def __new__(cls, value):
... return int.__new__(cls, bool(value))

This works - no exception and 2 is converted into 1.

>>> y = NewBool(2)
>>> y == 1
True

We’ll go carefully through this definition of __new__.

1. We define __new__, which like __init__ has a special role in object
creation. But it’s role is to do with creation of a new object, and
not the initialisation of an already created object.

2. The function __new__ has two parameters. The first parameter is
a class. The way we’ve called it, it will be the NewBool class.

	The function __new__ returns a value.

	The value returned is

int.__new__(cls, bool(value))

Understanding int.__new__

Here’s the docstring for _int.__new__.

>>> print int.__new__.__doc__
T.__new__(S, ...) -> a new object with type S, a subtype of T

Let’s try it, with S and T equal.

>>> z = int.__new__(int, 5) # (*)
>>> z == 5
True
>>> type(z)
<type 'int'>

Thus, we see that line (*) is very much like or perhaps the same as
int(5). Let’s try another example.

>>> int('10')
10
>>> int.__new__(int, '21')
21

The docstring above says that S must be a subtype of T. So let’s create one.

>>> class SubInt(int): pass

And now let’s use it as an argument to int.__new__.

>>> subint = int.__new__(SubInt, 11)

Now let’s test the object we’ve just created. We expect it to be an
instance of SubInt, and to be equal to 11.

>>> subint == 11
True
>>> type(subint)
<class 'SubInt'>

There we have it. Success. All that’s required to complete the
emulation of bool is to put all the pieces together.

Note

The key to subclassing immutable types is to use __new__ for both
object creation and initialisation.

Exercise Create a class EmulBool that behaves like the
bool builtin.

Exercise (Hard). Parameterize EmulBool. In other words, create
an EnumInt such that

X = EnumInt(['False', 'True'])

creates a class X that behave like EmulBool.

Subclassing tuple

Recall that with EmulBool in Subclassing int we had to define a
__new__ method because we need to adjust the values passed to EmulBool
before the instance was created.

The desired properties of Point

Since Python 2.6, namedtuple has been part of the
collections module. We can use it to provide an example of
what is required.

>>> from collections import namedtuple
>>> Point = namedtuple('Point', ('x', 'y'))

Here are some facts about the Point class.

	Point is a subclass of tuple.

>>> Point.__bases__
(<type 'tuple'>,)

	Two arguments are used to initialise a point.

>>> p = Point(1, 2)

	A point has items at 0 and at 1.

>>> p[0], p[1]
(1, 2)

	We can access these items using the names x and y.

>>> p.x, p.y
(1, 2)

Exercise Write an implementation of Point, that satisfies the
above. (Please use the hints - they are there to help you.)

Hint To pass 1, 2 and 3 only three lines of code are required.

Hint To pass 4 use property, which replaces getting an attribute
by a function call.

Hint The elegant way to pass 4 is to use
operator.itemgetter(). Use this, and you’ll need only
another 3 lines of code in order to pass 4.

Answer

	Point is a subclass of tuple.

>>> class Point(tuple):
... def __new__(self, x, y):
... return tuple.__new__(Point, (x, y))

>>> Point.__bases__
(<type 'tuple'>,)

	Two arguments are used to initialise a point.

>>> p = Point(1, 2)

	A point has items at 0 and at 1.

>>> p[0], p[1]
(1, 2)

	We can access these items using the names x and y.

>>> import operator

>>> Point.x = property(operator.itemgetter(0))
>>> Point.y = property(operator.itemgetter(1))

>>> p.x, p.y
(1, 2)

What happens when you call a class?

In this section we describe, in some detail, what happens when you
call a class.

Creation and initialisation

Recall that every object has a type (sometimes known as a class).

>>> type(None), type(12), type(3.14), type([])
(<type 'NoneType'>, <type 'int'>, <type 'float'>, <type 'list'>)

The result of calling a class C is, ordinarily, an initialised object
whose type is C. In Python this process is done by two functions

	__new__ returns an object that has the right type

	__init__ initialises the object created by __new__

To explain we will do the two steps one at a time. This will also
clarify some details. But before we begin, we need a simple class.

>>> class A(object):
... def __init__(self, arg):
... self.arg = arg

We will explain what happens when Python executes the following.

a = A('an arg')

First, Python creates an object that has the right type. (The
temporary tmp is introduced just to explain what happens. Python
stores its value at a nameless location.)

>>> tmp = A.__new__(A, 'an arg')
>>> type(tmp)
<class 'A'>

But it has not been initialised.

>>> tmp.arg
Traceback (most recent call last):
AttributeError: 'A' object has no attribute 'arg'

Second, Python runs our initialisation code.

>>> tmp.__init__('an arg')
>>> tmp.arg
'an arg'

Finally, Python stores the value at a.

>>> a = tmp

The default __new__

We did not define a __new__ method for our class A, but all the same
Python was able to call A.__new__. How is this possible?

For an instance of a class C, getting an attribute proceeds via the
method resolution order of C. Something similar, but with important
differences, happens when getting an attribute from C itself (rather
than just an instance).

Here’s proof that A.__new__ and object.__new__ are the same object.
We show this in two different, but equivalant, ways.

>>> A.__new__ is object.__new__
True
>>> id(A.__new__) == id(object.__new__)
True

This explains how it is that Python can call A.__new__ even though we
did not supply such a function ourselves.

For another example, we subclass int.

>>> class subint(int): pass
>>> subint.__new__ is int.__new__
True

Summary

Suppose C is a class. When you call, say

C(*argv, **kwargs)

the following happens.

	C.__new__ is found.

	The result of the following call is stored, say in tmp.

C.__new__(C, *argv, **kwargs)

	tmp.__init__ is found.

	The result of the following is return as the value of the class call.

self.__init__(*argv, **kwargs)

	(Not discussed.) If tmp is not an instance of C (which includes
subclasses of C) then steps 3 and 4 are omitted.

Metaclass

Every object has a type

In Python, every object has a type, and the type of an object is an
instance of type.

>>> type(0)
<type 'int'>
>>> isinstance(type(0), type)
True
>>> class A(object): pass
>>> type(A)
<type 'type'>
>>> a = A()
>>> type(a)
<class 'A'>

Even type has a type which is an instance of type (although it’s a
little silly).

>>> type(type)
<type 'type'>
>>> isinstance(type, type)
True

The metaclass of an object

The metaclass of an object is defined to be the type of its type.

>>> def metaclass(obj):
... return type(type(obj))

>>> metaclass(0)
<type 'type'>

>>> metaclass(metaclass)
<type 'type'>

It’s quite hard to create an object whose metaclass is not type.

A trivial non-type metaclass

In Python anything that is a type can be subclassed. So we can
subclass type itself.

>>> class subtype(type): pass

We can now use subtype in pretty much the same way as type itself. In
particular we can use it to construct an empty class.

>>> cls = subtype('name', (object,), {})

Let’s look at the type and metaclass of cls.

>>> type(cls), metaclass(cls)
(<class 'subtype'>, <type 'type'>)

Notice that type(cls) is not type. This is our way in. Here’s an
instance of cls, followed by its type and metaclass.

>>> obj = cls()
>>> type(obj), metaclass(obj)
(<class 'name'>, <class 'subtype'>)

We have just constructed an object with a non-trivial metaclass. The
metaclass of obj is subtype.

A non-trivial example

When Python executes

obj[key]

behind the scenes it executes

obj.__getitem__[key]

Here’s an example:

>>> class A(object):
... def __getitem__(self, key):
... return getattr(self, key)

>>> obj = A()
>>> obj['name']
Traceback (most recent call last):
AttributeError: 'A' object has no attribute 'name'

>>> obj.name = 'some value'
>>> obj['name']
'some value'

What’s the point?

There are two main reasons for introducing and using a metaclass, or
in other words a subclass of type.

	We wish to create classes whose behaviour requires special methods
or other properties on the type of the class. This sounds and is
odd, but can useful. In JavaScript objects we use it to
create an elegant and simple implementation in Python of
JavaScript object semantics.

	We wish to make the class statement construct a class differently,
somewhat as bool() construct a number differently from an
int(). This is described in The __metaclass__ attribute,
which is the next section.

The __metaclass__ attribute

The __metaclass__ attribute was introduced to give the programmer some
control over the semantics of the class statement. In particular it
eases the transition from old-style classes (which are not covered in
this tutorial) and new-style classes (simply called classes in this
tutorial).

Automatic subclassing of object

If at the told of a module you write:

__metaclass__ = type

then class statements of the form:

class MyClass:
 pass

will automatically be new-style. In other words, you don’t have to
explicitly place object in the list of bases. (This behaviour is a
consequence of the semantics of __metaclass__.)

Review of type(name, bases, body) and class statement

Recall that the type command, called like so

cls = type(name, bases, body)

constructs the class cls, as does the class statement

class cls(...):

 # body statements go here

The __metaclass__ attribute provides a link between these two ways of
constructing classes.

The basic principle of the __metaclass__

Ordinarily, a class statement results in a call to type, with name,
bases and body as arguments. However, this can be changed by

	Assigning __metaclass__ as an class body attribute.

	Assigning __metaclass__ as a module attribute.

	Placing a suitable class in the bases of the class statement.

Method (1) is used above, in Automatic subclassing of object.
To explain (2) we will introduce a very silly example.

A very silly example

It’s not necessary for the __metaclass__ attribute to be type or a
subclass of type. It could be any callable.

Here it is a function that returns a string.

>>> class very_silly(object):
... def __metaclass__(*argv):
... return 'This is very silly.'

The variable silly bound by the class statement is a string.
In fact, it is the return value of the __metaclass__ attribute.

>>> very_silly
'This is very silly.'

A less silly example

Here’s a less silly example. We define the __metaclass__ to return
the argument vector passed to it. This consists of name, bases and body.

>>> class silly(object):
... def __metaclass__(*argv):
... return argv

The variable silly is now bound to the value of argv. So it is a
tuple of length 3, and it can be unpacked into name, bases and body.

>>> type(silly), len(silly)
(<type 'tuple'>, 3)
>>> name, bases, body = silly

The name, and bases are much as we expect them.

>>> name == 'silly', bases ==(object,)
(True, True)

The body has, as could be expected, a __metaclass__ key, which has the
expected value.

>>> sorted(body.keys())
['__metaclass__', '__module__']
>>> silly[2]['__metaclass__']
<function __metaclass__ at 0x...>

A __metaclass__ gotcha

A class statement, if it does not raise an exception, assigns a value
to a variable. Ordinarily, this value is a direct instance of type, namely

type(name, bases, body)

However, using __metaclass__ above allows the value assigned by a
class statement to be any object whatsover. In the very silly example
the value assigned by the class statement was a string. This is a
violates the principle of least surprise, and that is the main reason
why the example is very silly (and not that it does nothing useful).

With decorators, which are available on class statements since Python
2.6, the same effect as the silly example can be obtained without
resort to complex magic.

A decorator example

Here we produce something similar to the silly example. First we
define a decorator

>>> from jfine.classtools import dict_from_class
>>> def type_argv_from_class(cls):
... d = cls.__dict__
... name = cls.__name__
... body = dict_from_class(cls)
... bases = cls.__bases__
... return name, bases, body

Now we use the decorator. There is no magic. The class statement
produces a class, and the decorator function
type_args_from_class() produces an argument vector from the
class.

>>> @type_argv_from_class
... class argv(object):
... key = 'a value'

When we unpack argv we get what we expect.

>>> name, bases, body = argv
>>> name
'argv'
>>> bases
(<type 'object'>,)
>>> body
{'key': 'a value'}

Decorators versus __metaclass__

Whenever a __metaclass__ is used, one could also use a decorator to
get effectively the same result. This section discusses this topic.

For an example we use the concept of a Bunch, as discussed in Alex
Martelli’s excellent book Python in a Nutshell. As he says, a Bunch
is similar to the struct type in C.

Bunch using decorators

Here we give a construction based on the decorator point of view.
First we define a function, which can be used as a decorator, that
returns a bunch class.

>>> def bunch_from_dict(a_dict, name='a_bunch'):
...
... __slots__ = sorted(a_dict.keys())
... defaults = dict(a_dict)
... bases = (BaseBunch,)
...
... def __init__(self, **kwargs):
... for d in defaults, kwargs:
... for key, value in d.items():
... setattr(self, key, value)
...
... body = dict(__slots__=__slots__, __init__=__init__)
... return type(name, bases, body)

We now need to implement the BaseBunch class, from which the return
bunch classes will inherit __repr__ and, if we wish, other attributes.

>>> class BaseBunch(object):
... def __repr__(self):
... body = ', '.join([
... '%s=%r' % (key, getattr(self, key))
... for key in self.__slots__
...])
... return '%s(%s)' % (self.__class__.__name__, body)

Here’s an example of the creation of a Point class.

>>> Point = bunch_from_dict(dict(x=0, y=0), 'Point')

And here are examples of its use.

>>> Point(x=1, y=3)
Point(x=1, y=3)
>>> Point()
Point(x=0, y=0)

We can also use bunch_from_dict as a decorator.

>>> from jfine.classtools import dict_from_class
>>> @bunch_from_dict
... @dict_from_class
... class RGB(object):
... 'This is a docstring.'
... red = green = blue = 0

We could, of course, introduce a new decorator
bunch_from_class() to make life a little easier for the user.

Here’s an example of the use of the RGB class. It shows that the name
of the class is not being properly picked up. This is an interface
problem rather than a problem with the decorator approach. The name
is available to be used, but the interface is not making it available.
Similar remarks apply to the docstring.

>>> RGB(blue=45, green=150)
a_bunch(blue=45, green=150, red=0)

Bunch using __metaclass__

The code here is based on the __metaclass__ implementation of Bunch,
given in Python in a Nutshell. The API is:

class Point(MetaBunch):

 x = 0.0
 y = 0.0

The base class MetaBunch() is defined by:

class MetaBunch(object):

 __metaclass__ = metaMetaBunch

The real work is done in

class metaMetaBunch(type):

 def __new__(cls, name, bases, body):

 # Creation of new_body similar to bunch_from_dict.
 # ... but first need to 'clean up' the body.
 new_body = ... # Computed from body

 # Creation of new instance similar to bunch_from_dict.
 # ... but here can't use type(name, bases, new_body)
 return type.__new__(cls, name, bases, new_body)

where I’ve omitted the crucial code that computes the new_body from
the old. (My focus here is on the logic of __metaclass_ and not the
construction of the new body.)

How __metaclass__ works

In Python the class statement creates the class body from the code you
have written, placing it in a dictionary. It also picks up the name
and the bases in the first line of the class statement. These three
arguments, (name, bases, body) are then passed to a function.

The __metaclass__ attribute is part of determining that function. If
__metaclass__ is a key in the body dictionary then the value of that
key is used. This value could be anything, although if not callable
an exception will be raised.

In the example above, the MetaBunch class body has a key
__metaclass__, and so its value metaMetaBunch is used. It is
metaMetaBunch that is used to create the value that is stored at
MetaBunch.

What is that value? When we instantiate metaMetaBunch we use its
__new__ method to create the instance, which is an instance of type.
In particular, the code that creates the new_body is run on the body
of MetaBunch.

Now what happens when we subclass MetaBunch. One might think that

	because Point inherits from MetaBunch

	and because MetaBunch has a __metaclass__ in its body

	and that __metaclass__ has value metaMetaBunch

it follows that metaMetaBunch is use to construct the Point class.

But this is gotcha. Even though the conclusion is correct the
reasoning is not. What happens is that

	Python looks for __metaclass__ in the body of Point

	but it’s not there so it looks at the bases of Point

	and in the bases it finds MetaBunch

	whose type is metaMetaBunch

and so it uses that instead of type when constructing Point.

Discussion

Here are the main differences between the two approaches.

The decorator approach

	Syntax differs from ordinary class statement.

	Awkward if class decorators are not available.

	As is, the name is not picked up.

	Easier to construct Bunch classes dynamically.

	The Point class is an instance of type.

The __metaclass__ approach

	Syntax the same as ordinary class statement.

	‘Magic’ takes place behind the scenes.

	Requires more knowledge to implement.

	Awkward to construct Bunch classes dynamically.

	The Point class is an instance of MetaBunch.

My view is that using decorators is simpler than using __metaclass__,
particularly if the decorator syntax is available.

JavaScript objects

Like Python classes

In JavaScript all objects are part of an inheritance tree. The
create function adds a node to the inheritance tree.

// A JavaScript object.
js> root = {}

// Prototype inheritance.
js> create = function (obj) {
 var f = function () {return this;};
 f.prototype = obj;
 return new f;
 }

js> a = create(root)
js> b = create(a)

js> a.name = 5
js> a.name
5
js> b.name
5

In Python classes inherit in the same way.

>>> root = type # Most classes are instance of type.
>>> class a(root): pass
>>> class b(a): pass # Class inheritance.

>>> a.name = 5 # Just like JavaScript.
>>> a.name
5
>>> b.name
5

class explanation

In Python we can subclass anything whose type is type (or a
subclass of type). A subclass (and its instances) inherits properties
from the super-class.

>>> type(root) == type(a) == type(b) == type
True

Custom item methods

In JavaScript attribute and item access are the same.

js> a = create(root)

js> a.name = 5
js> a['name']
5

js> a['key'] = 6
js> a.key
6

js> a[1] = 6
js> a['1']
6

In Python we can defined our own item methods. (The programmer owns
the dot.)

>>> class A(object):
...
... def __getitem__(self, key):
... return getattr(self, str(key))
... def __setitem__(self, key, value):
... return setattr(self, str(key), value)

>>> a = A()
>>> a.name = 5

>>> a['name']
5

>>> a['key'] = 6
>>> a.key
6

>>> a[1] = 6
>>> a['1']
6

Because type(a) is A, which has the special item methods, we
get the special item behaviour.

>>> type(a) is A
True

On metaclass

Using previous definition, we cannot subclass a to create b.

>>> class b(a): pass
Traceback (most recent call last):
 class b(a): pass
TypeError: Error when calling the metaclass bases
 object.__new__() takes no parameters

This is because a is not a type. The solution involves Python
metaclasses (an advanced topic).

>>> isinstance(a, type)
False

metaclass construction

We will subclass type, not object, and add to it the special item
methods.

>>> class ObjectType(type):
...
... def __getitem__(self, key):
... return getattr(self, str(key))
...
... def __setitem__(self, key, value):
... return setattr(self, str(key), value)

Here is a fancy way of calling ObjectType.

>>> class root(object):
... __metaclass__ = ObjectType

Here is a more direct (and equivalent) construction (create an
instance of ObjectType, whose instances are objects).

>>> root = ObjectType('root', (object,), {})
>>> isinstance(root(), object)
True

metaclass demonstration

>>> class a(root): pass
>>> class b(a): pass

>>> a.name = 5
>>> a.name
5
>>> b.name
5
>>> a['name']
5
>>> b['name']
5

>>> a[1] = 6
>>> a['1']
6

metaclass explanation

Because type(root) is a subclass of type we can subclass root.

>>> issubclass(type(root), type)
True

Because the type(root) is ObjectType, which has special item
methods, we get the special item behaviour.

>>> type(root) == type(a) == type(b) == ObjectType
True

Never instantiated

We can’t call JavaScript objects (unless they are a function). But
create creates ordinary JavaScript objects.

js> a = create(root)
js> a(1, 2, 3)
TypeError: a is not a function

We will monkey-patch the previous Python class, to provide custom
behaviour when called.

>>> def raise_not_a_function(obj, *argv, **kwargs):
... raise TypeError, obj.__name__ + ' is not a function'

>>> ObjectType.__call__ = raise_not_a_function

>>> a(1, 2, 3)
Traceback (most recent call last):
 a(1, 2, 3)
TypeError: a is not a function

Conclusion

JavaScript objects are like Python classes (because they inherit like
Python classes).

For JavaScript attribute and item access are the same. This is
achieved in Python by providing custom item methods.

In Python the custom item methods must be placed on the type of the
object (or a superclass of its type).

Ordinary JavaScript objects are not functions and cannot be called. A
Python class can be called (to create an instance of the object). But
we can override this behaviour by supplying a custom method for call.

To summarize:
..

JavaScript objects are like Python classes with custom item
methods (on the metaclass) that are never instantiated.

It’s worth saying again:

JavaScript objects are like Python classes with custom item
methods (on the metaclass) that are never instantiated.

Exercise: A line from a file

We want to read lines from one of more files. We want each line to

	be a string

	have a filename attribute

	have a linenumber attribute

Recall that we can already iterate over the lines of a file.

The interface I suggest is

filename = 'myfile.txt'
f = open(filename)
labelled_lines = LabelledLines(f, filename)

The behavior we’d like is for this code

for line in labelled_lines:
 print (line.filename, line.linenumber, line)

to produce output like

('myfile.txt', 0, 'First line\n')
('myfile.txt', 1, 'Second line\n')
('myfile.txt', 2, 'Third line\n')

Exercise: Property from class decorator

A property is a way of providing a class with virtual or protected
attributes. They can be a good way of hiding and protecting
implementation details. The area property of a rectangle is a good
example of a read-only property.

Some properties are both read and write. There may also be a case for
write-only properties. One can also delete a property. To help the
programmer, a property can have a docstring.

The signature for property is

property(fget=None, fset=None, fdel=None, doc=None)

The exercise is to make a decorator that simplifies the creation of
complex property attributes. The interface I suggest is

class MyClass(object):

 @property_from_class
 class my_property(object):
 '''This is to be the doc string for the property.'''

 def fget(self):
 pass # code goes here

 def fset(self):
 pass # code goes here

 def fdel(self):
 pass # code goes here

Any or all of fget, fset, fdel can be omitted, as can the docstring.
It should be an error to ‘use the wrong keyword’.

Exercise: Named integers

The bool type produces True and False, which are something like named
integers. The exercise is to produce, from something like a mapping,
a subclass of int that provides named integers.

Just as True and False look nicer that 0 or 1 when a quantity is a
boolean, so named integers look nicer with symbolic constants.

The interface should be something like

my_items = [(0, 'zero'), (1, 'one'), (2, 'two')]
OneTwoThree = whatsit(my_items)

The behavior should be something like

z = OneTwoThree('zero')
str(z) == 'zero'

t = OneTwoThree(2)
str(t) == 'two'

Thus, any string or integer (within range) can be used to produce a
named integer. Out of range values should produce an exception.

Exercise: Subset of a set

The task here is to produce a memory efficient way of representing a
subset of a given base set. We will use bytes, and for simplicity we
assume that the base set has at most eight elements.

In Python 2.6 bytes is an alternative name for string, and in Python 3
it is a separate type in its own right (with a somewhat different
interface). Please do the exercise in Python 2.6 (or earlier, with
bytes equal to str).

The interface I suggest is something like

all_vowels = 'aeiou'
SubsetOfVowels = SubsetClassFactory(all_vowels)

my_vowels = SubsetOfVowels('ie')
set(my_vowels) == set(['i', 'e'])
ord(my_vowels[0]) == 2 + 4

Don’t deal with set operations, such as intersection or complement.

By the way, an application would be dealing with large numbers of
subsets of a largish set (set 255 elements), using numpy to store the
data and do the hard work. So set operation details would have to fit
in with numpy.

Exercise: Class to and from class data

Sometimes __metaclass__ is used to amend the operation of a class
statement. However always the same change can be done with a
decorator function, and often this is clearer and easier.

The exercise here is to produce some class from class decorators. The
first task is to produce two decorators whose composition is trivial.

In other words this

@class_from_class_data
@class_data_from_class
class MyClass(object):
 pass

should be equivalent to this

class MyClass(object):
 pass

Once we have done this, it’s a lot easier to modify classes during
construction, because so to speak the input-output has already been
dealt with. Simply write a function that changes or creates a class
data object.

The decorator function class_data_from_class should produce
class_data, which we can regard as a tuple.

The decorator function class_from_class_data should produce a class
from the class data.

Note

Don’t assume that the type of MyClass is type. It could be a
subclass of type.

Exercise: Your own class to class decorator

This is an open exercise. The task is to find a situation where you
need to change a class during its construction via a class statement,
and then to write a class to class decorator that does this.

Please use the class_to_class_data and class_data_to_class decorators,
either the ones supplied by the tutorial or your own (if you think
they are better).

Here’s a template, to get you started.

def my_class_decorator(cls):

 class_data = class_data_from_class(cls)
 new_class_data = whatever_you_want_it_to_be
 new_cls = class_from_class_data(new_class_data)
 return new_cls

Here are some ideas

	Check that the class supplies certain methods

	Perform other checks on the class

	Change methods so all calls are logged

	Supply extra utility methods to the class

	Refactor existing code that depends on __metaclass__

Index

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Objects and classes in Python

 		Decorators

 		The decorator syntax

 		Bound methods

 		staticmethod()

 		classmethod()

 		The call() decorator

 		Nesting decorators

 		Class decorators before Python 2.6

 		Constructing classes

 		The empty class

 		dict_from_class()

 		The __dict__ of the empty class

 		Is the doc-string part of the body?

 		Definition of dict_from_class()

 		property_from_class()

 		About properties

 		Definition of property_from_class()

 		Using property_from_class()

 		Unwanted keys

 		Deconstructing classes

 		type(name, bases, dict)

 		Constructing the empty class

 		Constructing any class

 		Specifying __doc__, __name__ and __module__

 		Subclassing int

 		Mutable and immutable types

 		Enumerated integers and named tuples

 		The bool type

 		Emulating bool - the easy part

 		Emulating bool - what goes wrong

 		Emulating bool - using __new__

 		Understanding int.__new__

 		Subclassing tuple

 		The desired properties of Point

 		Answer

 		What happens when you call a class?

 		Creation and initialisation

 		The default __new__

 		Summary

 		Metaclass

 		Every object has a type

 		The metaclass of an object

 		A trivial non-type metaclass

 		A non-trivial example

 		What's the point?

 		The __metaclass__ attribute

 		Automatic subclassing of object

 		Review of type(name, bases, body) and class statement

 		The basic principle of the __metaclass__

 		A very silly example

 		A less silly example

 		A __metaclass__ gotcha

 		A decorator example

 		Decorators versus __metaclass__

 		Bunch using decorators

 		Bunch using __metaclass__

 		How __metaclass__ works

 		Discussion

 		JavaScript objects

 		Like Python classes

 		class explanation

 		Custom item methods

 		On metaclass

 		metaclass construction

 		metaclass demonstration

 		metaclass explanation

 		Never instantiated

 		Conclusion

 		Exercise: A line from a file

 		Exercise: Property from class decorator

 		Exercise: Named integers

 		Exercise: Subset of a set

 		Exercise: Class to and from class data

 		Exercise: Your own class to class decorator

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

